If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+7m-42=0
a = 7; b = 7; c = -42;
Δ = b2-4ac
Δ = 72-4·7·(-42)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-35}{2*7}=\frac{-42}{14} =-3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+35}{2*7}=\frac{28}{14} =2 $
| 3x2-4x-12=0 | | -63=9(u-8) | | 9x+5-2x-8=5+7x+2 | | 7-9y=-83 | | 7+3/5d=5 | | 7=x/3+8 | | 4.3(11.4r-10.8)=100.2 | | 18=5m=+3 | | 6×x=69 | | -4=y/6-9 | | -7/6u=27 | | 6/7u=47 | | 3(3x-4)(2x-7)=0 | | x=90(x-x) | | 6x^2-22x+4=x-4 | | x=1(x=9)-34 | | 12=+v-8/2 | | 2x+12=8x-3 | | x2−8x−27=−x−9 | | 3.9(5r-3.3)=66.3 | | 180=23x-5 | | 15x-16=15(6)-16 | | 15x-16+6x+1=90 | | 15x-16+6+1=90 | | (2x-1)(x+14)=0 | | 4(j-951)=140 | | 5p+24=3p+12 | | 14x-24=90 | | 15+7a=36 | | 144=9p | | 2/7+-1/7x=-14/23 | | -17=y/5-16 |